

MATERIAL PROCESSOR INSTRUCTION MANUAL

MODELS:

M35G M35K M35S

"Use Genuine NPK Parts"

7550 Independence Drive Walton Hills, OH 44146-5541 Phone (440) 232-7900 Toll-free (800) 225-4379 Fax (440) 232-6294

© Copyright 2020 NPK Construction Equipment, Inc. Processor Instruction Manual 3-20

www.npkce.com

M000-9601C M35 Material

CONTENTS

SAFETY	
OPERATION	5
MAINTENANCE	6
INTRODUCTION	
EXCAVATOR COMPATIBILITY	
M-SERIES SPECIFICATIONS	
M35G MATERIAL PROCESSOR	
M35K MATERIAL PROCESSOR	10
M35S MATERIAL PROCESSOR	
K JAW CUTTING CAPACITY	
SERIAL NUMBER LOCATION	
JAW SET IDENTIFICATION	
PROCESSOR BOOSTER & CYLINDER	17
INTRODUCTION	17
STRUCTURE OF THE BOOSTED CYLINDER	18
OPERATING PRINCIPLE	19
HYDRAULIC INSTALLATION	26
HYDRAULIC KITS	26
FLOW DIRECTION	26
SHUT-OFF VALVES	26
TEST PORT LOCATIONS	
PREVENTION OF CONTAMINATION	28
HYDRAULIC QUICK DISCONNECTS	29
MOUNTING INSTALLATION	31
M35 SERIES TOP BRACKET	31
MOUNTING TO THE CARRIER	32
REMOVAL FROM THE CARRIER	32
STORAGE OF THE M35 MATERIAL PROCESSOR	33
HOSE INSTALLATION	34
WHIP HOSE INSTALLATION TIPS	34
OPERATING INSTRUCTIONS	
OPERATING TECHNIQUES AND PRECAUTIONS	40
GENERAL MAINTENANCE	42
DAILY INSPECTION AND MAINTENANCE	42
LUBRICATION POINTS	43
HOSE INSTALLATION TIPS	44
CUTTER BLADE MAINTENANCE	46
G and S JAWS	46
M35K JAW MAINTENANCE	48
DAILY MAINTENANCE	48
CUTTER BLADE MAINTENANCE	49
K JAWS	49
K JAW BLADE SET UP PROCEDURE	50
M35K	50
COMPONENT DESCRIPTION	51
M35K	51
K JAW BLADE MAINTENANCE AND ADJUSTMENT	52
PIERCING TIP MAINTENANCE AND REPLACEMENT	59
	59
JAW INSPECTION AND MAINTENANCE	60
JAW INSPECTION: G and S JAWS	60
WEEKLY INSPECTION	60
JAW PROFILES: G and S JAWS	60
JAW BUILD-UP AND HARDFACING (M35S)	60
TEETH BUILD-UP AND HARDFACING (M35G)	61
REPLACEABLE TOOTH PLATES – G JAWS	62
JAW AND TOOTH REBUILD PROCEDURE: S and G JAWS	62

CONTENTS

JAW CONTACT AREAS	. 65
S and G JAW CONTACT AREAS	. 65
FRAME MAINTENANCE	. 66
REPAIR OF MAIN FRAME	. 66
ROUTINE WELD REPAIR	. 66
INSPECTION AND MAINTENANCE	
BOOSTER CYLINDER	
DISASSEMBLY	. 68
INSPECTING AND CLEANING CYLINDER COMPONENTS	.71
SUGGESTED REPAIR TOOLS AND EQUIPMENT.	73
JAW SET INTERCHANGE	
TOOLS AND SUPPLIES	
JAW SET INTERCHANGE	
PROCEDURE FOR JAW SET INTERCHANGE	79
UNIT POSITIONING	
DETACHMENT OF THE EYE AND FORKED JAWS FROM THE CYLINDER SUB-ASSEMBLIES	79
REMOVAL OF THE JAW SET ASSEMBLY FROM THE MAIN FRAME	
JAW SET STORAGE	
JAW SET INSTALLATION INTO THE MAIN FRAME	82
SLEWING RING INSPECTION AND MAINTENANCE	
MEASURING MAXIMUM AXIAL MOVEMENT.	
SWIVEL MANIFOLD MAINTENANCE	
SWIVEL MANIFOLD ASSEMBLY	
LEAKAGE OF THE SEALS	
TESTING THE SUIVEL SEALS FOR INTERNAL LEAKAGE	
TEST PROCEDURE	
REPLACEMENT OF THE SEALS IN THE SWIVEL	. 00 86
FASTENER TORQUE SPECIFICATIONS	
HOSE TORQUE SPECIFICATIONS	
TROUBLESHOOTING	
DETERMINE THE TYPE OF PROBLEM	
DETERMINE THE LIPE OF PROBLEM	. 93
LOSS OF POWER	. 93
TROUBLESHOOTING GUIDE FOR LOW POWER	
RELIEF VALVE CHECKS	
MEASURING OPERATING PRESSURES	
RELIEF VALVE CHECKING AND SETTING PROCEDURE PRESSURE INTENSIFIER SEQUENCE VALVE AND RELIEF VALVE ACTUATION	
M35 MATERIAL PROCESSOR RELIEF VALVE AND CARRIER RELIEF VALVE SETTINGS	
RELIEF VALVE LOCATION PRESSURE INTENSIFIER OPERATION	
PRESSURE INTENSIFIER (BOOSTER)	. 102
RAPID CONTINUOUS CLICKING IS HEARD AND THE MATERIAL IS NOT BEING	4.00
CRUSHED/SHEARED AS EXPECTED	
CHECKING BOOSTED PRESSURE	
	-
CHECKING THE HYDRAULIC FLOW AT RATED PRESSURE	
JAW DRIFT TO DETERMINE IF THE JAW DRIFT IS WITH THE M35 MATERIAL PROCESSOR OR THE CARRIER .	. 108
ROTATION	. 109
KEYWORDS FOR COMMON M35 PROCESSOR COMPONENTS	
KEYWORDS FOR COMMON M35 PROCESSOR "K" JAW COMPONENTS	
KEYWORDS FOR COMMON M35 PROCESSOR CYLINDER COMPONENTS	
WARRANTY STATEMENTS	
NOTES	
SERVICE RECORD	. 117

SAFETY

Safety notices in NPK Instruction Manuals follow ISO and ANSI standards for safety warnings:

DANGER (red) notices indicate an imminently hazardous situation which, if not avoided, will result in death or serious injury.
 WARNING
 WARNING (orange) notices indicate a potentially hazardous situation which, if not avoided, could result in death or serious injury.
 CAUTION
 CAUTION (yellow) notices indicate a potentially hazardous situation, which, if not avoided, may result in minor or moderate injury.

ATTENTION (blue) notices in NPK Instruction Manuals are

an NPK standard to alert the reader to situations which, if not avoided, **could result in** equipment damage.

WARNING – FALLING OR FLYING DEBRIS decals are included with each NPK MATERIAL PROCESSOR. The decal (*part number H100-7210*) must be installed in the cab, visible to the operator.

WARNING – STAY CLEAR decal (*part number H100-7200*) is installed on all NPK Crushers, Shears, and MATERIAL PROCESSORS. Keep them clean and visible. NPK will provide decals free of charge as needed.

SAFETY

OPERATION

WARNING

- 1. Operator personnel must read and understand the *NPK INSTRUCTION MANUAL* to prevent serious or fatal injury.
- 2. FLYING OR FALLING DEBRIS CAN CAUSE SERIOUS OR FATAL INJURY. Keep personnel and bystanders clear of the MATERIAL PROCESSOR while in operation.
- 3. Do not operate MATERIAL PROCESSOR without an impact resistant shield between the MATERIAL PROCESSOR and operator. Operate with extreme caution near walls or columns that may collapse and near concrete debris that may fall.
- 4. Operate the MATERIAL PROCESSOR from the operator's seat only.
- 5. Use two people whenever operator visibility is limited, one to operate the MATERIAL PROCESSOR, the other to guide operations.
- 6. Do not leave a load suspended in air.
- 7. **Do not** pass a load over people, vehicles, etc.
- 8. **Do not** operate the MATERIAL PROCESSOR within reach of power lines.
- 9. *Do not* climb, sit, or ride on the MATERIAL PROCESSOR.

Warning Decal for Cab Installation

ACAUTION

- 10. Match the MATERIAL PROCESSOR size to excavator according to NPK recommendations, see page 8. The excavator must be stable during MATERIAL PROCESSOR operation and during transport.
- 11. Do not operate without inspection (access) covers in place.
- 12. Be especially cautious around hydraulic lines. Hydraulic oil can be extremely **HOT!** *Avoid skin contact with hydraulic oil. It can cause severe burns!*
- 13. Protect hands and body from hydraulic fluids under pressure. Escaping high pressure fluid can penetrate the skin, causing serious injury. Avoid the hazard by relieving pressure before disconnecting any lines. Search for leaks with a piece of cardboard or other object. If an accident occurs, see a doctor immediately! Hydraulic fluid injected into the skin must be surgically removed immediately or gangrene may result!
- 14. The pressure generated by the power intensifier on the MATERIAL PROCESSOR exceeds 10,000 psi (690 bar), which is higher than commonly encountered on hydraulic equipment. To avoid bodily harm and/or injury when conducting inspection checks, use gauges, hoses and fittings rated at 15,000 psi (1035 bar). For parts replacement, use only genuine NPK replacement parts. Contact NPK Service Department at 1-800-225-4379.
- 15. When removing or installing mounting pins, beware of flying metal chips.

SAFETY

MAINTENANCE

- 1. Use only NPK supplied replacement parts. NPK specifically disclaims any responsibility for bodily injury or MATERIAL PROCESSOR damage that results from the use of parts not sold or approved by NPK.
- Use extreme caution in handling. A fully assembled MATERIAL PROCESSOR can weigh up to 5 tons. Sub-assemblies range in weight from hundreds to thousands of pounds. To avoid bodily harm, use lifting and securing mechanisms of adequate capacity to support loads. Seek the aid of an assistant as much as possible, and always when handling heavier sub-assemblies.
- 3. Use extreme caution when changing jaw sets, particularly in the field. Employ lifting and securing mechanisms of adequate capacity to support the jaw sets. *At least two people are required to change a jaw set safely in the field.*
- 4. Wear safety glasses and protective clothing when working on the MATERIAL PROCESSOR. Wear thermal-protective gloves when handling heated parts.
- 5. Prevent exposure to hazardous fumes. Remove all paint, grease, and oil before heating, cutting or welding on the MATERIAL PROCESSOR.
- 6. Be especially cautious around hydraulic lines. Hydraulic oil can be extremely **HOT**! *Avoid skin contact with hydraulic oil. It can cause severe burns!*
- 7. Protect hands and body from hydraulic fluids under pressure. Escaping fluid under pressure can penetrate the skin, causing serious injury. Avoid the hazard by relieving pressure before disconnecting any lines. Search for leaks with a piece of cardboard or other object. If an accident occurs, see a doctor immediately! Hydraulic fluid injected into the skin must be surgically removed within a few hours or gangrene may result.
- 8. The pressure generated by the power intensifier on the MATERIAL PROCESSOR exceeds 10,000 psi (690 bar), which is higher than commonly encountered on hydraulic equipment. To avoid bodily harm and/or injury when conducting inspection checks, use gauges, hoses and fittings rated at 15,000 psi (1035 bar). For parts replacement, use only genuine NPK replacement parts. Contact NPK Service Department at 1-800-225-4379.
- 9. When removing or installing mounting pins, beware of flying metal chips.

MAINTENANCE

STANDARD PRACTICES

ATTENTION

Maintenance of and repairs to the MATERIAL PROCESSOR should be performed by an experienced service technician, thoroughly familiar with all standard practices and procedures, and most importantly, all safety precautions. The following is a review of common standard practices to be followed when working with hydraulic equipment, and is not meant to be all-inclusive. Rather, this review is presented as a reminder as to some of the unique characteristics of hydraulic equipment.

- The prevention of foreign contaminant damage is critical when working with hydraulic equipment. Protect exposed holes and parts to guard against entry of contaminants. Install metal or plastic plugs/caps where applicable to prevent entry of debris into the hydraulic system.
- Mark the location and position of mating parts as an aid to re-assembly. Mark corresponding parts uniquely to reflect their relationship, including proper location, position, orientation, and/or alignment.

<u>DO:</u>

- During assembly, observe all markings made during disassembly, and all corresponding features of mating parts to ensure proper location, position, orientation, and alignment.
- During disassembly of a sub-assembly, place removed components on a clean, dry surface, in proper relative position as an aid in re-assembly.
- Always inspect threaded areas on components. Repair or replace as required. Never apply uncured thread adhesive to a fastener that has cured adhesive on it. Clean the fastener and the threaded bore. A tap and die may be helpful for this task. Be sure to remove loose debris from the threaded bore.
- Use care to avoid scratches, nicks, dents, or other damage to machined surfaces of mating components.
- When securing a component, always tighten cap screws gradually in an opposing pattern, applying the specified torque.
- Grease can be used to temporarily hold a part in place while the abutting part is placed into position.
- Always use common sense and exercise standard safety precautions when working with all tools and equipment required to maintain, repair or troubleshoot the MATERIAL PROCESSOR.

INTRODUCTION

Thank you for your purchase of an NPK attachment. NPK prides itself in the design and manufacture of high quality attachments. The quality workmanship and materials, which go into all of our attachments, will provide maximum service life. With proper care and use, your NPK attachment should provide you with many years of productive service.

The purpose of this manual is to provide you with information and instructions required to properly operate and maintain the M35 MATERIAL PROCESSOR. This will result in maximum ATTACHMENT reliability and productivity.

Read this manual thoroughly before attempting to operate, remove, disassemble, repair, or troubleshoot the MATERIAL PROCESSOR or any of its components. For additional information or help with any problem encountered, please contact your authorized NPK dealer.

Follow all the safety precautions contained in this manual. Failure to follow safety precautions can result in death, personal injury, injury to others and property damage.

Use replacement parts sold by NPK only. NPK is not responsible for failures resulting from alterations not approved by NPK or substitution of parts not sold by NPK.

EXCAVATOR COMPATIBILITY

These carrier weight ranges are intended as a guideline only. Other factors, such as stick length, counterweights, undercarriage, etc., must be taken into consideration.

Mounting a MATERIAL PROCESSOR that is too heavy for the carrier can be dangerous and damage the carrier. Verify carrier stability with the MATERIAL PROCESSOR before transport or operation.

Mounting a MATERIAL PROCESSOR that is too small for the carrier can damage the MATERIAL PROCESSOR and void Warranties. Please consult NPK Service or Engineering for specific detailed information.

PROCESSOR	RECOMMENDED CARRIER WEIGHT RANGE					
MODEL	3rd member mounting					
	US ton	US ton (<i>Metric ton</i>)				
M35	30 - 40 (27 - 36)					

Specifications subject to change without notice.

M-SERIES SPECIFICATIONS

M35G MATERIAL PROCESSOR

MODEL	Weight		Maximum Jaw		Oi	Oil Flow		Cycle Time	
			Opening				seconds		
	lb.	(<i>kg</i>)	in.	(<i>mm</i>)	gpm	(Ipm)	open	close	
M35G	7,590	(3,450)	38.6	(981)	50-80	(190-300)	1.6	3.1	

MODEL	Мах	kimum	Crushi	ng Force
	Operatin	g Pressure	at	Тір
			US	(Metric
	psi	(bar)	Ton	Ton)
M35G	3,700	(255)	127	(115)

Specifications subject to change without notice.

Cycle time is full stroke at maximum flow.

Carrier flow is set at minimal operating pressure of 1000 psi (69 bar).

*Maximum operating pressure is determined by reliefs in the crusher.

M-SERIES SPECIFICATIONS

M35K MATERIAL PROCESSOR

MODEL	Weight		Maximum Jaw Opening		Oil Flow		Cycle Time seconds	
	lb.	(<i>kg</i>)	in.	(<i>mm</i>)	gpm	(Ipm)	open	close
M35K	7,370	(3,350)	22	(559)	50-80	(190-300)	1.6	3.1

MODEL	Мах	cimum	Crushi	ng Force
	Operatin	g Pressure	at	Тір
			US	(Metric
	psi	(bar)	Ton	Ton)
M35K	3,700	(255)	125	(113)

Specifications subject to change without notice.

Cycle time is full stroke at maximum flow.

Carrier flow is set at minimal operating pressure of 1000 psi (69 bar).

*Maximum operating pressure is determined by reliefs in the crusher.

M-SERIES SPECIFICATIONS

M35S MATERIAL PROCESSOR

MODEL	Weight		Weight Maximum Jaw Opening		Oil Flow		Cycle Time seconds	
			Op	ening			seco	nas
	lb.	(<i>kg</i>)	in.	(<i>mm</i>)	gpm	(<i>Ipm</i>)	open	close
M35S	7,535	(3,425)	43	(1,092)	50-80	(190-300)	1.6	3.1

MODEL	Мах	cimum	Crushi	ng Force
	Operatin	g Pressure	at	Тір
			US	(Metric
	psi	(bar)	Ton	Ton)
M35S	3,700	(255)	110	(100)

Specifications subject to change without notice.

Cycle time is full stroke at maximum flow.

Carrier flow is set at minimal operating pressure of 1000 psi *(69 bar)*. *Maximum operating pressure is determined by reliefs in the crusher.

K JAW CUTTING CAPACITY

NOTE: Cutting capacities listed below are based on a single pass cut. Larger material can be cut using multiple pass cuts.

APPETITE GUIDE: MILD STEEL

MODEL		Α	В		С		D	
	in	(mm)	in	(mm)	in	(mm)	in	(mm)
M35K	16	(406)	16	(406)	5/8	(15.9)	5/8	(15.9)

MODEL		E		F
	in <i>(mm)</i>		in	(mm)
M35K	2-1/2	(63.5)	3/4	(19.1)

SERIAL NUMBER LOCATION

M35

JAW SET IDENTIFICATION

• G Jaw Set (Pulverizer/Secondary Concrete Crusher) for the downsizing of concrete and the separation of concrete and rebar.

JAW SET IDENTIFICATION

• K Jaw Set (Shear) for the demolition of steel structures, such as buildings and bridges, as well as for processing of scrap, including steel, wood, rubber and plastics.

JAW SET IDENTIFICATION

• S Jaw Set (Primary Breaker) for the demolition of concrete pillars, buildings, retaining walls, bridges, and highway barriers.

Jaw sets can easily be removed from and installed onto the Material Processor at the job site, see the **"JAW SET INTERCHANGE"** section, page 78, of this manual.

INTRODUCTION

The hydraulic cylinders used on the NPK Material Processor are equipped with hydraulic boosters. To close the jaws of the processor, hydraulic oil from the carrier is directed to the base end of the cylinders, which extends the cylinder rods. Under no load, no boost is applied and this results in a rapid cycle time as compared to large, non-boosted cylinders.

When a load *(material to be crushed or sheared)* is encountered, the oil is directed into the booster sections of the cylinders, which intensifies the pressure well beyond the system operating pressure of the excavator. The compact NPK Boosted Cylinder System provides a working force equal to a far larger non-boosted cylinder, which is working at excavator system pressure. Because the NPK boosted cylinder is smaller, it requires less oil for full stroke as compared to a large diameter cylinder. This reduces cycle time for the NPK Material Processor. To open the jaws of the NPK Material Processor, oil is directed to the rod end of the cylinder. This retracts the rod and pulls the jaw open. No boost is provided in the jaw opening mode.

c11	Jaw Cylinder
c14	Booster Piston
c15	Main Valve Assembly
c17	Relief Valve (close)
c18	Relief Valve (open)
c44	Swivel Manifold
k2	Carrier Hydraulic Pump
k7	Carrier Control Valve

STRUCTURE OF THE BOOSTED CYLINDER

For a complete breakdown of parts in the booster cylinder assembly, see the parts manual for each unit by serial number.

As shown in **Fig. 1**, the booster cylinder consists of:

bs34	Inlet Check Valve	
c11	Jaw Cylinder	
c14	Booster Piston	
c15	Main Valve Assembly	
c17	Relief Valve (close)	
c18	Relief Valve (open)	
c19	Plunger	
c20	Pilot Check Valve Assembly	
c21	Check Valve 1 - booster piston inner "B"	
c22	Check Valve 2 - booster piston inner "A"	
c23	Check Valve 3 - booster sleeve "B"	
c24	Check Valve 4 - booster sleeve "A"	
c25	Check Valve 5 - Return	
c26	Port C1 Piston	
c27	Port C2 Piston	
c28	Port C3 Piston	
c44	Swivel Manifold	
c47	Small Plunger	
k2	Carrier Hydraulic Pump	
k7	Carrier Control Valve	
v1	Oil Chamber - 1	
v2	Oil Chamber - 2	
v3	Oil Chamber - 3	
v4	Oil Chamber - 4	

OPERATING PRINCIPLE

c11	Jaw Cylinder
c20	Pilot Check Valve Assembly
k7	Carrier Control Valve

Fig. 2 CYLINDER EXTEND (NO LOAD)

When the cylinders (c11) are extended *(jaw close)* and no load *(material to be crushed or sheared)* is encountered, oil is directed from the carrier control valve (k7) to the base end of the cylinders by way of the pilot check valves (c20) in the booster assemblies. When there is no load condition, hydraulic pressure is low and no boosted pressure is required.

OPERATING PRINCIPLE

c14	Booster Piston		
c15 Main valve Assembly			

Fig. 3 BOOSTER ACTUATION

When a load *(material to be crushed or sheared)* is encountered on jaw close, the hydraulic pressure in the booster unit starts to rise, which redirects the hydraulic oil through the control valve (c15) of the booster, then to the booster piston (c14). This starts the boosting process. The booster piston is double ended and provides boost in each direction of booster piston travel.

OPERATING PRINCIPLE

c11	Jaw Cylinder	
c14	Booster Piston	
c15	Main Valve Assembly	
c23	Check Valve 3 - booster sleeve "B"	
c24	Check Valve 4 - booster sleeve "A"	
v1	Oil Chamber - 1	
v2	Oil Chamber - 2	
v4	Oil Chamber - 4	

Fig. 4 FORWARD PISTON STROKE

The hydraulic oil that has passed through the booster valves (c15), flows into rear oil chambers v1 and v2 of the booster pistons (c14) and strokes it toward oil chambers v4. Because the area of the booster pistons in oil chambers v1 is greater than the area in chambers v4, the pressure in oil chambers v4 is intensified. The higher pressure oil is pushed through check valves (c24) to the base end of the cylinders (c11) and closes check valves (c23).

OPERATING PRINCIPLE

1		
c14	Booster Piston	
c15	Main Valve Assembly	
c19	Plunger	
c26	Port C1 Piston	
c27	Port C2 Piston	

Fig. 5 MAIN VALVE REVERSE SHIFT

When the booster pistons (c14) reaches their full stroke, oil entering port "C1" (c26) transfers to port "C2" (c27) of the pistons. Oil is also sent to the plunger (c19) end of the main valve assemblies (c15). This shifts the valve as shown in **Fig. 5**.

OPERATING PRINCIPLE

c11	Jaw Cylinder	
c14	Booster Piston	
c15	Main Valve Assembly	
c20	Pilot Check Valve Assembly	
c23	Check Valve 3 - booster sleeve "B"	
c24	Check Valve 4 - booster sleeve "A"	
v2	Oil Chamber - 2	
v3	Oil Chamber - 3	
v4	Oil Chamber - 4	

Fig. 6 REVERSE PISTON STROKE

When the main valve assemblies (c15) have been shifted, oil is directed through the main valve assemblies to oil chambers (v3) and (v4) of the booster pistons (c14). This strokes the booster pistons toward oil chambers (v2). The oil in chambers (v2) is intensified and sent through check valves 3 (c23) to the base end of the cylinders (c11). Pilot check valves (c20) and check valves 4 (c24) are also closed at this time.

OPERATING PRINCIPLE

c14	Booster Piston	
c15	Main Valve Assembly	
c19	Plunger	
c27	Port C2 Piston	
c28	Port C3 Piston	
k7	Carrier Control Valve	

Fig. 7 VALVE SHIFT TO FORWARD STROKE

When the booster pistons (c14) reach full reverse stroke, oil drains out of the plunger (c19) ends of the main control valves (c15) through ports C2 (c27) and C3 (c28) of the booster pistons. The main control valve springs move the main control valve spools toward the plungers. This places the main control valves in position to direct oil to the booster pistons to start the next forward piston stroke. These forward and reverse piston strokes will continue as long as the excavator's control valve (k7) is shifted to send hydraulic flow to the boosters and cylinders and that there is sufficient resistance *(load)* to keep the booster active.

OPERATING PRINCIPLE

c11	Jaw Cylinder	
c20	Pilot check valve assembly	
k7	Carrier Control Valve	

Fig. 8 CYLINDER RETRACT (JAW OPEN)

When the crusher jaws are opened, oil from the excavator's control valve (k7) is directed through the boosters to the rod ends of the cylinders (c11). A pilot signal from this flow is sent to open the pilot check valve assemblies (c20) which allows oil to be pushed out of the base end of the cylinders as the cylinder rods retract. There is no boost actuation on the jaw open cycle.

HYDRAULIC INSTALLATION

HYDRAULIC KITS

NPK Hydraulic Installation kits are available for virtually all compatible backhoe loaders, excavators and skid steers. Complete parts and instructions for the hydraulic installation of the NPK Material Processor, including valves, electrical or manual controls, hoses and fittings, boom and stick piping and clamps are provided.

Combination kits that can be used for hydraulic hammer or compactor/driver operation are available.

See your NPK dealer for details or call NPK direct at 1-800-225-4379.

FLOW DIRECTION

(All NPK Hydraulic Kits)

The hydraulic flow to close (m3) the Material Processor jaws is on the left side of the carrier (looking from the operator's seat) and to open (m4) the jaws is on the right.

SHUT-OFF VALVES

Most NPK Hydraulic Installation Kits use two shut-off valves (k4) on the stick (k1) of the carrier. Each shut-off valve has an "**ON**" (k5) and an "**OFF**" (k6) position. Make sure both shut-off valves are in the "**ON**" position before operating your attachment.

TEST PORT LOCATIONS

A. NPK Hydraulic Installation kits have pressure test (gauge) ports (k8) in both shutoff valves (k4).

B. NPK also provides pressure test (gauge) ports (k8) in both the pressure and return joint fittings (m18) located on the attachment top bracket (m7).

C. For older units without pressure test ports in the top bracket or for units mounted on a carrier without an NPK Hydraulic Installation kit, it is suggested that you use a correctly sized JIC swivel run tee (f3) and a reducer fitting (a86) between the whip hose (m38) and the joint fitting (m18).

ATTENTION

PREVENTION OF CONTAMINATION

- 1. Neglect of the hydraulic oil will cause many problems in all of the hydraulic components, including the attachment. Care should be taken to check for contamination of the oil and to change the oil if contamination is found. *Routine oil sampling is recommended once per month.*
- When the hydraulic oil shows low viscosity and bubbles, this indicates that the oil is deteriorated. If the oil is dark brown and gives off an offensive odor, it is severely deteriorated. Change the oil immediately!
- When the oil is clouded, or the oil filter becomes clogged, it indicates that the oil is contaminated. Change the oil immediately!
- To change the contaminated hydraulic oil, drain the hydraulic system as completely as possible. Try to minimize the amount of old oil that will be mixed with the new oil.
 NOTE: It is suggested to change the oil in the system with all of the cylinders retracted.

NOTE: If a catastrophic failure has occurred and the system is found to have metal mixed with the hydraulic oil, a complete disassembly and clean out must be done to **ALL** hydraulic components and attachments. **ALL** of the hydraulic lines must be flushed.

- 2. Do not allow any contaminants to mix with the hydraulic oil. Take special care in preventing contamination from entering the hydraulic system through the hose or tube connection when installing or removing the attachment. Always have caps and plugs ready.
- 3. Low oil level will cause heat buildup, resulting in deterioration of the hydraulic oil. Also, it may cause pump cavitation due to air mixing with the oil, leading to damage to the attachment or the carrier components. Keep the oil at the proper level at all times.
- 4. Do not use the hammer at an operating temperature higher than 180°F (80°C). The proper operating oil temperature range is between 120°F (50°C) and 180°F (80°C). Since contaminated cooler fins cause reduced efficiency of the cooler, keep them clean at all times. The use of a heat gun is the best way to evaluate if the cooler is working properly.
- 5. Water in the hydraulic oil will lead to damage of the attachment and the carrier. Drain off water and foreign matter from the hydraulic tank at specified intervals. When out of service, the attachment should be stored indoors.

HYDRAULIC INSTALLATION

HYDRAULIC QUICK DISCONNECTS

NPK prefers the use of a straight JIC connection (39) when installing its Material Processor onto a carrier.

NOTE: Care should be given when removing the Material Processor to make sure that the hoses are plugged and the tube ends are capped to prevent contamination from entering the hydraulic system.

NPK recommends against the use of non-NPK hydraulic quick disconnects on fluid circuits operating NPK Products, including Material Processors, for the following reasons:

1. The hydraulic pulsations caused by the Material Processor can cause internal pieces of the non-NPK quick disconnect *(32)* to disintegrate. These pieces can migrate into the Material Processor, causing damage to the unit. That damage is not covered by NPK's warranty.

- 2. Contamination can enter the hydraulic system if the quick disconnect ends are not kept clean. The quick disconnects should be capped to keep them clean. If this is not done, contamination in the quick disconnect will be flushed into the hydraulic system, causing internal damage to the Material Processor.
- 3. Most quick disconnects create a restriction in the hydraulic circuit. NPK Material Processors are not pressure sensitive, but the restrictions cause unnecessary heating of the oil. Also, the pressure required to operate the Material Processor, plus the restriction of the quick disconnects may push an older, lower pressure carrier to the limit of its hydraulic system. This would interfere with the proper operation of the Material Processor. However, the NPK approved quick disconnects are properly sized so that the Material Processor operation is not affected.

HYDRAULIC INSTALLATION

HYDRAULIC QUICK DISCONNECTS

NPK has approved quick disconnects. Contact your NPK dealer or NPK direct at 1-800-225-4379 for proper sizing of approved NPK quick disconnects for your unit.

MOUNTING INSTALLATION

NPK Mounting Installation Kits include the parts required to adapt the NPK M35 Material Processor to the stick of an excavator. The kits include all necessary boom pins, bushings, spacers, etc.

NOTE: *NPK Mounting Kits using loose fit bushings to adapt the pins to the top bracket are not compatible for use with quick attaches or pin grabbers.*

M35 SERIES TOP BRACKET

The M35 Series top bracket is ported for right or left side hose access for rotation and motor case drain line connections.

ITEM	DESCRIPTION	
во	Holding Valve	
BQ2	Rotation Motor	
CW	Rotation Hose	
сх	Motor Drain Line	
m18a	Main Connection (<i>close</i>) - #20 JIC male	
m18b	Main Connection (<i>open</i>) - #20 JIC male	
m20	Rotation Connections - #8 JIC male	
m21	Motor Drain Connection - #6 JIC male	
m22	Optional Rotation Ports	
m23	Optional Drain Port	

MOUNTING TO THE CARRIER

- 1. Position the M35 Material Processor horizontal on wood blocks (t20) as shown.
- 2. Align the stick pin bore (m26). Install stick pin (m1).
- 3. Align the link pin bore (m25). Install the link pin (m2).
- 4. Clean away any dirt found on the hose connections then connect the whip hoses (m3 and m4).
- 5. Connect the rotation whip hoses (m39) and hydraulic motor case drain whip hose (m40).
- 6. Open the shut-off valves (k4).

ATTENTION

The hydraulic lines must be handled carefully to prevent contamination from entering the M35 Material Processor or the carrier hydraulic system.

REMOVAL FROM THE CARRIER

- 1. Retract the cylinders to open the jaws fully.
- 2. Shut off the carrier's engine and relieve all hydraulic pressure.
- 3. Close the shut-off valves.
- 4. Disconnect the hydraulic hoses before laying the M35 Material Processor down. Install metal plugs in the hydraulic hoses and metal caps on the stick tubes to keep out contamination.
- 5. Position the M35 Material Processor horizontal on wood blocks (t20), as shown in **"MOUNTING TO THE CARRIER"**.

STORAGE OF THE M35 MATERIAL PROCESSOR

1. Make sure all whip hoses (m38) that connect the M35 Material Processor to the carrier are plugged (AS) and all hose connections are capped (AR), and turn shut-off valves (k4) to the "**OFF**" position.

- 2. Grease all lubrication points; see the "GENERAL MAINTENANCE" section under "LUBRICATION POINTS".
- 3. If the unit is stored outdoors, retract the cylinder and cover with a waterproof tarp.

HOSE INSTALLATION

WHIP HOSE INSTALLATION TIPS

- 1. Connect larger diameter hoses first. Larger hoses are more difficult to bend and maneuver, while the smaller lines are usually more flexible and easier to install.
- 2. Do not twist the hose during installation. Pressure applied to a twisted hose can result in premature hose failure or loose connections.

3. Attach both ends of the hose to their connection points. Let the hose find its natural position, then tighten both ends of the hose, using a wrench (t6) and backup wrench (t6a).

4. Torque hose to specifications.

NOMINAL	THREAD	TORQUE	
HOSE SIZE	IZE SIZE ft. lbs.		(Nm)
1/2"	3/4 - 10	39	(52)
3/4"	1-1/16 - 12	88	(119)
1"	1-5/16 - 12	113	(153)
1-1/4"	1-5/8 - 12	133	(180)

HOSE INSTALLATION

WHIP HOSE INSTALLATION TIPS

5. All hoses change in length slightly when pressure is applied. Hoses must have enough slack to relieve stressing the connections.

6. Make sure the hose being installed is routed with the proper bend radius to prevent kinking, flow restrictions or hose failures at the hose connection.

HOSE	MINIMUM		
SIZE	BEND RADIUS		
	in <i>(mm)</i>		
1/2"	7	(177.8)	
3/4"	9.5 (241.3)		
1"	12	(304.8)	
1-1/4"	16.5	(419.1)	

7. Hoses should be used within the following ranges of temperature.

	TEMPERATURE RANGE	
	°F	(°C)
HYDRAULIC FLUID	14 to 176	(-10 to +80)
ATMOSPHERIC	14 to 122	(-10 to +50)

OPERATING INSTRUCTIONS

Before operating the NPK M35 Material Processor, be sure to read the safety information and perform the daily and weekly maintenance as specified in this manual.

DO NOT OPERATE THE M35 MATERIAL PROCESSOR WITHOUT DEMOLITION GUARDS IN PLACE!

WARNING

DO NOT LIFT OR LOAD BEYOND THE CAPACITY OF THE M35 MATERIAL PROCESSOR OR THE CARRIER.
OPERATING INSTRUCTIONS

USE THE M35 MATERIAL PROCESSOR ONLY FOR THE APPLICATION FOR WHICH IT IS INTENDED:

• NPK M35 Material Processors equipped with "G" style jaws are designed for the downsizing of concrete, the separation of concrete and rebar and some primary demolition.

"G" JAW APPLICATION

OPERATING INSTRUCTIONS

USE THE NPK M35 MATERIAL PROCESSOR ONLY FOR THE APPLICATION FOR WHICH IT IS INTENDED:

• NPK M35 Material Processors equipped with "K" style jaws are designed for the demolition of steel structures and for processing of steel, wood, rubber and plastic scrap. It is not intended for processing concrete.

"K" JAW APPLICATION

OPERATING INSTRUCTIONS

USE THE M35 MATERIAL PROCESSOR ONLY FOR THE APPLICATION FOR WHICH IT IS INTENDED:

• NPK M35 Material Processors equipped with "S" style jaws are designed for the primary breakup of concrete, such as pillars, buildings, retaining walls, bridges and highway barriers.

"S" JAW APPLICATION

OPERATING TECHNIQUES AND PRECAUTIONS

ATTENTION

1. **Do not** use the Material Processor with the excavator cylinders fully extended or retracted.

2. **Do not** strike the material with the M35 Material Processor main body (DN1) or outer surface of the jaw set (DO1). **Do not** push, pull or scrape material with the M35 Material Processor.

3. For the most efficient operation, open the jaw only wide enough to grasp the material. Grasp the material to be crushed as deep into the throat of the M35 Material Processor as possible. **Do not** force the material into the jaw.

If you have any questions on operating the M35 Material Processor, please contact your local NPK dealer or call the NPK Service Department at 1-800-225-4379.

OPERATING TECHNIQUES AND PRECAUTIONS

ATTENTION

4. **Do not** pry, twist, or pull with the excavator. Allow the hydraulic crushing forces of the M35 Material Processor jaw to do the work. If the material does not crush completely at first, open the jaws and close again in a chewing action. The excavator is used as a way of positioning the processor and supplying hydraulic power to the processor.

- 5. **Do not** use the rebar cutters on the "S" and "G" jaw sets to cut rod over 1-1/4" in diameter.
- 6. **Do not** operate the M35 Material Processor on an excavator with an NPK combination Hydraulic Hammer/Crusher hydraulic installation kit without first isolating the line mounted accumulators (k23).

- a. The shut-off valve (k4) in the return line (FT) must be in the "**OFF**" (k6) position for use with the processor.
- b. On some later NPK Hydraulic Installation Kits, the isolation feature is done automatically through the use of an accumulator isolation valve (k26). Consult with NPK at 1-800-225-4379 if you are unsure of what your carrier is equipped with.

REFER TO IMPORTANT SAFETY INFORMATION SECTION

DAILY INSPECTION AND MAINTENANCE

The functions the M35 Material Processor performs are demanding and in tough environments. Therefore, it is extremely important that the following maintenance and inspection procedures be performed daily:

- Grease all lubrication points! Use moly EP2 or equivalent grease. For lubrication points, see "GENERAL MAINTENANCE", "LUBRICATION POINTS".
- Check for oil leaks at the cylinder piston rod (c3), the machined surfaces (*145*), and at all of the M35 Material Processor's hose and fitting connections (hf1).

- Inspect the hydraulic hoses for wear, damage or oil leakage.
- Inspect for loose, broken, and missing fasteners. Replace and/or retighten to torque specifications as required. See the "FASTENER TORQUE" section of this manual. Call the NPK Service Department at 1-800-225-4379 if there are any questions regarding torque.
- Check the moveable jaws and main frame for cracks. See the "FRAME CRACK AND JAW REPAIR" section of this manual or contact NPK at 1-800-225-4379 for repair procedure.
- Check the condition of the cutting blades; see "CUTTER BLADE MAINTENANCE".

LUBRICATION POINTS

M35

GR1	CYLINDER ROD PINS	One lubrication point per cylinder located at the jaw attachment end.	10 strokes from a grease gun every 4 hours.
GR3	JAW PIVOT PIN	One lubrication point on each end of pin ("S", early "K" and "G" jaws). Two lubrication points on one end, one lubrication point on the other end (later "K" jaws).	15 strokes from a grease gun per fitting every 4 hours.
GR4	SLEWING RING/PINION TEETH	Two lubrication points 180° apart.	5 strokes from a grease gun per fitting per shift.
GR5	MOTOR PINION	One lubrication point on each side of the hydraulic motor located on the top bracket.	5 strokes from a grease gun per fitting once per shift.
GR6	CYLINDER BASE END PINS	One lubrication point located at the main frame attachment end.	10 strokes from a grease gun every 4 hours.

HOSE INSTALLATION TIPS

- 1. Connect larger diameter hoses first. Larger hoses are more difficult to bend and maneuver, while smaller lines are usually more flexible and easier to install.
- 2. **Do not** twist the hose during installation. Pressure applied to a twisted hose can result in premature hose failure or loose connections. Attach both ends of the hose to their connection points. Let the hose find its natural position, then tighten both ends using a wrench and backup wrench.

3. Torque hose to specifications, see "HOSE TORQUE SPECIFICATIONS".

NOMINAL	THREAD	TORO	QUE
HOSE SIZE	SIZE	ft. Ibs.	(Nm)
1/2"	3/4-16	109	(80)
3/4"	1-1/16-12	245	(180)
1"	1-5/16-12	272	(200)
1-1/4"	1-5/8-12	250	(250)

4. All hoses change in length slightly when pressure is applied. Hoses must have enough slack to relieve stressing the connections.

HOSE INSTALLATION TIPS

5. Make sure the hose being installed is routed with the proper bend radius to prevent kinking, flow restrictions, or hose failures at the hose connection.

6. Hoses should be used within the following ranges of temperature.

	TEMPERATURE RANGE	
	°F	°C
HYDRAULIC FLUID	14 to 176	(-10 to +80)
ATMOSPHERIC	14 to 122	(-10 to +50)

CUTTER BLADE MAINTENANCE

G and S JAWS

When cutter blades become damaged or rounded due to abrasion, grind the rounded areas of the blades (BG) to a sharp 90° edge.

Use care in handling to avoid bodily harm.

Do not over grind the blades to the point that the surface becomes blue or discolored. This will make the blades brittle.

Cutter blades can be flipped four times to increase service life. Replace the cutter blade if it is cracked, chipped, or worn beyond repair.

DO NOT WELD CUTTER BLADES!

Torque the cutter blade bolts (OO) to specification; see the **"FASTENER TORQUE"** section of this manual.

CUTTER BLADE MAINTENANCE

G and S JAWS

BLADE-TO-BLADE CLEARANCE

Fig. 1

A blade-to-blade ('A'-'A') clearance of .010" to .040" (0.25 to 1.00 mm) should be maintained for optimum performance. Install shims (BH) under blade (BG) as necessary, see fig. 1.

SHIM KITS

MODEL/	NPK SHIM	
JAW TYPE	KIT PART	
	NUMBER	
M35, S & G	1618210	

M35K JAW MAINTENANCE

The following information is to be used as a general guide for maintaining the jaws and cutter blades on the NPK M35 Series Processor. Failure to maintain the jaws and cutter blades will result in poor performance, and eventual failure to the jaws and cutter blades. These failures are not covered under the standard NPK warranty.

Use care when handling the blades.

Do not over grind the cutter blades.

Do not weld on the cutter blades.

During normal use of a processor, the jaws and cutter blades will become worn. Regular maintenance must be performed to ensure that the maximum efficiency is realized.

DAILY MAINTENANCE

- Grease the two arm pins and center pivot area two times per shift using an EP #2 grease (15 pumps of grease).
- Check the jaw weldment for cracks. Contact NPK at 1-800-225-4379 for repair procedure, if a crack is found.
- Inspect for loose, broken and missing fasteners. Replace and re-torque as required. See "FASTENER TORQUES".
- Check the condition of the cutting blades. If the edge is rounded and dull, grind the edges back to 90°. Rotate the blades if extreme wear or chipping on the cutting edge is noted. If the blades are replaced or rotated, they must be shimmed. Blades should be shimmed from .005" (0.127 mm) to a maximum of .010" (0.254 mm). Replace the blades if they are cracked.

• See "BLADE MAINTENANCE AND ADJUSTMENT" for piercing tip and blade maintenance.

CUTTER BLADE MAINTENANCE

K JAWS

BLADE-TO-BLADE CLEARANCE

M35K

A blade to blade clearance of .000" to .010" (.00 to 0.25 mm) should be maintained for optimum performance.

See Fig. 2 for cutting blade and shim arrangement. Refer to the NPK Parts Manual for part numbers.

PIERCING TIP TO TUNNEL BLADE GAP

M35K

The piercing tip to tunnel blade gap can be increased by removing the tunnel spacer, which can be helpful in some piercing operations.

Removal of the spacer on the M35K increases the gap by .20 inch (5 mm).

Fig. 2 (With bolt-on piercing tip)

BD	ARM	
BG	PRIMARY CUTTING BLADE	
BG1	SECONDARY CUTTING BLADE	
BH	SHIM PACK (drive arm only)	
BI	DRIVE ARM	
DB	TUNNEL BLADE	
DC	SPACER	
DE	SPACER PLATE	
DF	GUIDE BLADE (not shown)	
DG	PIERCING TIP (bolt-on)	

K JAW BLADE SET UP PROCEDURE

M35K

eded) first. Check to ensure that the	ST1.
"PIERCING TIP MAINTENANCE	
MAINTENANCE AND	
econd. Check to ensure that the	ST2.
and "BLADE MAINTENANCE AND	
e arm. Shim to the primary blades.	ST3.
ade faces are parallel. See	
"BLADE MAINTENANCE AND	
1.	ST4.
and "BLADE MAINTENANCE AND	
side of the piercing tip.	ST5.
and "BLADE MAINTENANCE AND	
ade faces are parallel. See "BLADE MAINTENANCE AND n. and "BLADE MAINTENANCE A side of the piercing tip.	ST4.

COMPONENT DESCRIPTION

M35K

The arm (BD) contains the primary cutting blades (BG), spacer plates (DE) and a two piece bolt-on piercing tip (DA).

The drive arm (BI) contains the secondary blades (BG1), tunnel blade (DB), spacer (DC), guide blade (DF) and spacer plate (DE).

K JAW BLADE MAINTENANCE AND ADJUSTMENT

Each cutting blade and the tunnel blade can be turned four times. The guide blade can only be turned twice. The piercing tip is a bolt in style and cannot be turned. The piercing tip also cannot be built up via a weld procedure. Excessive tip wear will require replacing the tip.

When replacing or turning cutting blades, the following steps must be followed to achieve accurate blade shimming and final blade clearance.

STEP 1:

Start with the male jaw (BD) which contains the piercing tip and primary blades. These blades should be installed first. Prior to installing, the male jaw blade pocket and piercing tip pockets (DM) need to be free from debris and raised edges. Clean pockets and remove any raised edges from the pockets using a grinder (t1).

If existing blades (BG) are being turned, the face must also be free of scars. Remove the scars using a grinder (t1).

K JAW BLADE MAINTENANCE AND ADJUSTMENT

Install and tighten the piercing tip blades (DG) into the male jaw (BD) first using the three socket head cap screws (OO) provided. Use thread adhesive (t41) when installing the cap screws.

Each primary blade (BG) will have a spacer plate (DE) placed between the blade and blade pocket. Install the blades, spacers, and socket head cap screws (OO) into the male jaw and tighten.

STEP 2:

Using a steel straight edge (t15) place the edge across the face of the piercing tip (DG) and the primary blades (BG).

K JAW BLADE MAINTENANCE AND ADJUSTMENT

There should be no gap (d95) between primary blades, the piercing tip, and the straight edge. If the blades are being turned and a gap (d3) is found between either of the blades and the straight edge, measure the gap using feeler gauges and add shims as required. If the gap is found at the piercing tip, the primary blade or blades may require surface grinding at a machine shop. If the gap between the primary blades and the piercing tip is excessive, install new primary blades.

It is imperative that the primary blade faces are parallel/even in order to achieve correct blade clearance between the primary and secondary blades. Once the primary blades are in place, use thread adhesive (t41) on the socket head cap screws (OO). Then torque to NPK specifications (see the **"FASTENER TORQUE CHART"**).

K JAW BLADE MAINTENANCE AND ADJUSTMENT

STEP 3:

Install either reconditioned (used) or new secondary blades (BG1) and blade spacers (DE) into female jaw (BI) blade pockets (DM). Install socket head cap screws (OO) and tighten.

Begin closing the processor jaws until the first primary blade (BG) begins passing the first secondary blade (BG1), stop closing the jaws and measure the clearance (d60) between the two blades. Record the clearance, (example: .015" or .381 mm). Continue closing the jaws stopping to record the clearance (d61) at the second secondary blade.

NPK shim packs have a variety of shims (i.e., .005, .010, .024, .060, and .120). Install the required amount of shims behind each secondary blade until a clearance of .005" (.127 mm) is achieved between all primary and secondary blades. (One shim pack for each blade is recommended.)

K JAW BLADE MAINTENANCE AND ADJUSTMENT

STEP 3:

After blade shimming is complete, remove the socket head cap screws (OO) for each secondary blade and apply thread adhesive. Then torque to NPK specifications (see the **"FASTENER TORQUE CHART"**).

STEP 4:

Install either a reconditioned (used) or new tunnel blade (DB) into the female jaw tunnel blade pocket (DM). Then tighten the socket head cap screws (OO).

Slowly close the male (BD) and female (BI) jaws until the piercing tip (DG) enters the tunnel blade pocket (149).

K JAW BLADE MAINTENANCE AND ADJUSTMENT

STEP 4:

Verify the clearance (d66) between the lead edge of the piercing tip (DG) and tunnel blade (DB). This clearance should be approximately .15" (3.81 mm) to .19" (4.83 mm). Install tunnel blade shims if necessary to achieve the above clearances.

After blade shimming is complete, remove the socket head cap screws (OO) for the tunnel blade and apply thread adhesive. Then torque to NPK specifications (see the **"FASTENER TORQUE CHART"**).

STEP 5:

The female jaw (BI) also has two guide blades (DF) and two spacer plates (DE). The blades are located directly across from each other. Install either reconditioned (used) or new guide blades into the guide blade pockets (DM) then tighten the socket head cap screws (OO).

K JAW BLADE MAINTENANCE AND ADJUSTMENT

The guide blades (DF) must also be shimmed as close as possible to both sides of the piercing tip (DG). Begin closing the jaws until the piercing tip just enters the tunnel. Stop and measure the clearance (d63) between the guide blades and the sides of the piercing tip. Install the required amount of shims to reduce these gaps to .005" (.127 mm).

After blade shimming is complete, remove the socket head cap screws (OO) for the guide blades and apply thread adhesive. Then torque to NPK specifications (see the **"FASTENER TORQUE CHART"**).

PIERCING TIP MAINTENANCE AND REPLACEMENT

Before maintenance is performed on the piercing tip, it is recommended that the drive arm (tunnel) be repaired first.

MAINTENANCE

To maintain maximum piercing efficiency, the piercing tip (DG) should be checked daily for wear. The rate of wear that will occur is going to be influenced greatly due to the types of material being processed and the amount of piercing being done.

To check the jaw and tip for wear, close the arm (BD) until the piercing tip is beginning to enter the drive arm (BI) tunnel. If a large gap (d91) is noted and the tip is rounded (151), this is an indication that the piercing tip requires attention. It is also an indication that the tip is in need of attention if it is noted that material is being drug through the tunnel and not efficiently pierced by the tip.

JAW INSPECTION: G and S JAWS

WEEKLY INSPECTION

ATTENTION

With new G or S jaw sets, the teeth will contact before the cylinders reach full stroke. As the teeth continue to wear, the cylinders will reach full stroke and a gap will be apparent between the opposing jaws. If wear continues to this point or beyond, the crushing efficiency may decrease and the full cylinder force will be transferred to the cylinder end cap (c5) and retaining cap screws (OO).

This situation should be avoided. The jaws or teeth should be inspected and maintained to avoid this gap.

JAW PROFILES: G and S JAWS

G and S JAWS: Profiles can be checked against NPK original profile templates. Contact the NPK Service Department for assistance at 1-800-225-4379.

S JAWS: These jaws are hard faced. The best time to rebuild them is as soon as the hard face pattern is worn off. If the hard face pattern is gone and wear is in to the jaws itself, the profile should be rebuilt to that of the template. Do not allow tip wear to exceed .75" (19 mm) compared to the template or the cylinder will bottom out.

JAW BUILD-UP AND HARDFACING (M35S)

For build-up and hardfacing of jaw, use the NPK template to check jaws so that they are to the original profile. Contact NPK for the correct templates, drawing no. M3500-9501 and M3500-9502. Then, refer to **"JAW and TOOTH REBUILD PROCEDURE"**.

JAW INSPECTION: G and S JAWS

WEEKLY INSPECTION

G JAWS: Wear on the small outside side teeth (mp5) determines when the cylinders are approaching full extension. The large center teeth (mp6) are for crushing purposes only. New small teeth are .97" (*25 mm*) high for the M35.

Tip wear of the two large teeth may affect crushing efficiency. This profile can be rebuilt to that of a template.

TEETH BUILD-UP AND HARDFACING (M35G)

For build-up and hardfacing of teeth, use the NPK template (t72) to check teeth so that they are to the original profile (CY). Contact NPK for the correct template, drawing no. M3500-9500. Then, refer to **JAW and TOOTH REBUILD PROCEDURE**.

CZ – WORN PROFILE

JAW INSPECTION: G and S JAWS

WEEKLY INSPECTION

REPLACEABLE TOOTH PLATES – G JAWS

Another alternative is to replace the entire bolt on plates.

The male jaw tooth plate (BE) is part number M3500-2002.

The female jaw tooth plate (BE1) is part number M3500-2003.

JAW AND TOOTH REBUILD PROCEDURE: S and G JAWS

Due to the abrasive nature of the material being crushed, jaw wear will occur on the M35S and M35G Processors. The jaws must be built up with hard face weld when the clearance between the tip of the jaws in the closed position is worn to the extent that the material can no longer be crushed efficiently.

To ensure maximum crushing performance of the M35S or M35G, this rebuild procedure, comprised of three steps, should be followed.

- 1. Surface Preparation
- 2. Underlayment Weld
- 3. Hard Face Weld

1. SURFACE PREPARATION

Grind the entire worn area until it is smooth and clean. Remove all paint, grease, oil, dirt, and old hardfacing material before welding.

JAW INSPECTION: G and S JAWS

WEEKLY INSPECTION

JAW AND TOOTH REBUILD PROCEDURE: S and G JAWS

2. UNDERLAYMENT

Underlayment weld is necessary to build-up the base material (DH) to match the original jaw or tooth profile before hardfacing. You cannot hard face over old hardfacing.

- Welding rod: Airco Austex 361, Cronatron 7770, Eutectic 3205, Postalloy 205, Stoody 2110 or equal. In Canada: NCH Canada Inc. Hi-Pact #194 or equal.
- Dry welding rod at 300°F+ (150°C+).
- Pre-heat the jaw area to 300° 400°F (150° 200°C) and maintain this temperature during the welding operation. It is very important to maintain this temperature in cold environments.
- Adjust weld current to rod manufacturer's specifications.
- Peen each layer.
- Cool slowly. Cover weld in cold environments.

3. HARD FACE

Hard face (we3) can only be applied over base material (DH) or underlayment weld (we2). **NEVER HARD FACE OVER EXISTING HARD FACE!**

JAW INSPECTION: G and S JAWS

WEEKLY INSPECTION

JAW AND TOOTH REBUILD PROCEDURE: S and G JAWS

Welding Rod: Airco Tubecraft 1A, Cronatron 7355, Eutectic N6006, Postalloy 214, Stoody 31 or equal. In Canada: NCH Canada Inc. Wear-X #176 or equal.

- Dry welding rod at 300°F+ (150°C+).
- Pre-heat the jaw area to 350°F (177°C) and maintain this temperature during the welding operation. It is very important to maintain this temperature in cold environments.
- Adjust weld current to rod manufacturer's specifications.
- Peen each layer. Do not exceed 2 3 layers of hard face.
- Cool slowly. Cover weld in cold environments.

DO NOT WELD OVER OLD HARDFACING!

Remove all old hardfacing before applying new underlay weld.

JAW CONTACT AREAS

S and G JAW CONTACT AREAS

In contact areas of jaws, hardfacing (we3) may be added to increase the wear life of these surfaces for hardfacing instructions, see the **JAW and TOOTH REBUILD PROCEDURE.**

K JAWS: Several surfaces of the K jaws have been hard faced in contact areas. Hardfacing (we3) may be added to increase the wear life of these surfaces. The best time to rebuild them is as soon as the hard face pattern is worn off. If the hard face pattern is completely worn, the surfaces should be rebuilt and hard faced such that they are even with or slightly above the adjoining blades. See **HARDFACING K JAWS**.

HARDFACING: K JAWS

If hardfacing is to be performed, the jaw must be preheated to 300° - 400°F (150° - 200°C) before hardfacing is applied. Failure to preheat the tip area will cause the hardfacing to crack and chip off prematurely. Using a suitable hard face rod, apply the material in stringer beads vertically on the front and sides of the piercing tip and parallel to the moveable jaw on the lower face of the piercing tip. This pattern will allow for the most efficient piercing and the least amount of interference. Peen after each pass and maintain inner pass temperature. **DO NOT APPLY MORE THAN TWO (2) LAYERS OF HARD FACE MATERIAL!**

FRAME MAINTENANCE

REPAIR OF MAIN FRAME

Inspect frame for cracks periodically. Crushing or shearing is an abusive operation and eventually frame cracking may occur. If the attachment has been overstressed due to improper operation or has been used for many hours of operation, the steel components may develop fatigue cracks. If cracking is found in any of the steel components of the processor, photos of the crack or cracks must be emailed to NPK immediately so that the crack can be evaluated and a repair option recommended.

ROUTINE WELD REPAIR

- 1. Gouge any cracks 100% using an air or electric hand held grinder (t1), carbon arc (t12) or torch (t13).
- 2a. Grind gouged area to a 30° angle on each side to the full depth of the gouged area for plate sizes up to 3/4" (19 mm) thick.
- 2b. Grind gouged area to a 45° angle on each side to the full depth of the gouged area for plate sizes over 3/4" (19 mm) thick.
- -3 mm -45° HAMA00184 -6 mm -30°

HAMA00185

- 3. If the crack is completely through the plate, grind the bevel in halfway from both sides. Remove all slag and grinding residue.
- 4. Consult the **"JAW and TOOTH REBUILD PROCEDURE"**, **"HARD FACE"** section for pre-heat and welding instructions.
- 5. Peen or stress relieve after each pass. Maintain pre-heat.
- 6. After welding, grind area flush.

22 DIRECTION OF GRINDING

23 DIRECTION OF PRINCIPLE STRESS

FRAME MAINTENANCE

REPAIR OF MAIN FRAME

ROUTINE WELD REPAIR

7. Allow area to cool slowly (*eight hours minimum*). Cover with a heat blanket or other suitable insulation. FAILURE TO DO SO MAY CAUSE CRYSTALLIZATION OF THE WELD AND SUBSEQUENT BREAKAGE.

NOTE: NPK Construction Equipment has developed this repair procedure based on known information about structure and material. This, however, does not imply that repairs made using this procedure are guaranteed to be successful. NPK, therefore, cannot warranty this procedure. There is **NO** warranty regarding this repair either expressed or implied.

BOOSTER CYLINDER

DISASSEMBLY

1. Remove the booster assembly (bs35) from the cylinder assembly (c11).

NOTE: See the Booster Manual (B000-9601 for Booster maintenance.

- 2. Remove the spacers (bs23), o-rings (RR) and backup rings (SS) from the cylinder assembly (c11).
- 3. Remove the cylinder end cap socket head cap screws (OO).

4. Remove the cylinder rod assembly (c48) from the cylinder housing (c4).

PROC10097

BOOSTER CYLINDER

of the piston rings.

DISASSEMBLY

5. Check the piston rings (c8). The rings should be free in their grooves. If the rings are found to be stuck in their grooves, use a die grinder with a soft (preferably stone polishing NPK polishing wheel p/n 25026030) and polish the rings until they spring out of their grooves. If a ring is broken it must be replaced.

6. Using a ring expander (t16), remove all

7. Lightly heat the rod nut set screw (c6) to loosen any thread adhesive that is present. Remove the rod nut set screw.

t16

8. Unscrew the rod nut (c1) and remove the piston (c2) from the cylinder rod (c3). Remove the cylinder end cap (c5).

BOOSTER CYLINDER

DISASSEMBLY

- 9. Remove the dirt seal (QQ), rod seal (PP), o-ring (RR) and backup rings (SS) from the cylinder end cap (c5) and discard.
- CS QQ VCRS00068
- 10. Remove the o-ring (RR) and backup rings (SS) from the inside of the piston and discard.

INSPECTING AND CLEANING CYLINDER COMPONENTS

ACAUTION

The prevention of foreign contaminant damage is critical when working with hydraulic equipment. Keep the work area clean. Using masking tape, cover all exposed holes and parts which may allow entry of foreign contaminants. Habitually clean the work area by wiping with a lint-free dry cloth.

Mating surfaces are machined to a smooth surface. Use care to avoid scratches, nicks, dents or other damage to machined surfaces. If damaged, the component must be repaired or replaced as required.

- 1. Inspect the heads and threads of all fasteners and plugs and corresponding threaded bores for damage. Repair or replace as required.
- Inspect all components, particularly machined surfaces, including all hydraulic ports, for evidence of scratches, scoring, nicks, dents, wear, deformity, or other damage. Particularly close attention should be given to o-ring grooves and counter bores. Repair or replace as required.
- 3. Inspect drained and residual hydraulic fluid for evidence of contamination. If contaminated, inspect all components, seal, etc., to determine the cause.
- 4. Inspect the cylinder housing (c4) bore. Lightly hone using a ball hone (t17). If there is heavy scoring, the cylinder housing will need to be replaced.

5. Inspect the bronze guide (c10) found in the cylinder end cap (c5) for damage or excessive wear.

INSPECTING AND CLEANING CYLINDER COMPONENTS

ACAUTION

6. Using a die grinder with a soft polishing stone (t8), preferably NPK polishing wheel p/n 25026030, polish the leading edges of the piston ring grooves *(25)* to remove damage to the piston and allow free movement of the piston rings.

7. Using a straight edge (t15), check the cylinder rod (c3) for straightness.

NOTE: The cylinder rod is a forged, high strength part. It is not possible to repair the rod. If the rod is bent or damaged, it must be replaced.

8. Clean all parts with a degreaser solvent using a Scotchbrite® or equivalent cleaning pad.

Compressed air can cause injury or death! Limit air pressure to a maximum of 30 psi (2 *bars*). Protect your eyes with safety glasses. Do not direct compressed air current at exposed skin. Do not direct compressed air current at other people within the work area.

9. Remove all thread sealant from threads using an appropriate thread sealant solvent. Remove old thread sealant residue with a maximum of 30 psi *(2 bars)* of compressed air.
SUGGESTED REPAIR TOOLS AND EQUIPMENT

Air or electric handheld grinder (NPK model NHG-65LD recommended) Polishing wheel for grinder (NPK p/n 25026030) NPK Assembly Lube (NPK p/n H010-5010) Emery cloth (200 grit) Cleaning solvent

ASSEMBLY

1. Install dirt seal (QQ), backup ring (SS) and piston seal (PP) into the seal grooves on the inner side of the cylinder end cap (c5). Install the o-ring and backup ring into the outer groove.

2. Apply hydraulic oil or NPK Assembly Lube to the inner surface coating the previously installed dirt seal, backup ring and piston seal. Install the cylinder end cap onto the cylinder rod.

INSPECTION AND MAINTENANCE SUGGESTED REPAIR TOOLS AND EQUIPMENT

c2

c3

SS

RR

UCRS00068

c2

t41

th1

SHR1133

SS

- Install the o-ring (RR) and backup rings (SS) into the piston (c2). Apply a light coat of hydraulic oil or NPK Assembly Lube to the o-ring and backup ring after installation.
- 4. Install the piston (c2) onto the cylinder rod (c3).
- 5. Apply high strength thread adhesive to the clean dry threads of the cylinder rod.
- 6. Install cylinder rod nut (c1) onto cylinder rod (c3) and torque to the listed value below.

c3

MODEL	THREAD	TORQUE		SOCKET	PART
	SIZE	ft. lb. (<i>Nm</i>)		SIZE	NUMBER
M35	M70 x 3.0	3,200	(4,300)	100 mm	16087553

SUGGESTED REPAIR TOOLS AND EQUIPMENT

7. Install the set screw (c6).

8. Using a ring expander (t16), install the piston rings with the splits in the piston rings opposing each other.

9. Apply hydraulic oil or NPK Assembly Lube to the inner surface of the cylinder housing and to the outside diameter of the piston and piston rings.

 Install the cylinder rod assembly (c48) slowly into the cylinder housing (c4) taking care not to damage the piston rings (c8).

SUGGESTED REPAIR TOOLS AND EQUIPMENT

11. Install the cylinder end cap socket head cap screws (OO) and torque to the value listed below.

MODEL	BOLT	TORQUE ft. lb. (<i>Nm</i>)	
	SIZE		
M35	M20 x 2.5	430	(580)

12. Apply a light coat of oil or NPK Assembly Lube to four new backup rings (SS), four new o-rings (RR) and the two spacers (bs23), then install in the corresponding counter bores of the main cylinder (c11).

- 13. Apply a light coat of oil or NPK Assembly Lube to the mating surfaces of the booster main body.
- 14. With the aid of an assistant, carefully orient and align the eight mounting flange fastening holes of the booster assembly (bs35) with the corresponding eight threaded bores of the cylinder assembly (c11). If necessary, install two eye-bolts in the threaded bores on top of the booster assembly. Lift and move the booster assembly using a hoist.
- 15. Apply high-strength thread sealant to the clean, dry threads of the eight previously removed cap screws.

SUGGESTED REPAIR TOOLS AND EQUIPMENT

16. Secure the main booster assembly to the cylinder housing using the eight cap screws and washers. Tighten the cap screws in an opposing pattern. Torque to value listed below.

MODEL	BOLT	TOR	QUE
	SIZE	ft. lb.	(<i>Nm</i>)
M35	M16 x 2	220	(300)

TOOLS AND SUPPLIES

The following are tools and supplies needed to properly change jaw sets.

- A sturdy pallet (wood or metal).
- Three wood blocks, 4" x 4" x 24" (100 x 100 x 610 mm) or larger.
- 12 mm hex key socket.
- 17 mm hex key socket (available as NPK part no. 35004600).
- 12 mm hex key wrench (available as NPK part no. 25004120).
- 17 mm hex key wrench (available as NPK part no. 25004170).
- 1/2" drive breaker bar.
- 3/4" or 1/2" air gun *(if available)*.
- Brass drift pin.
- Dead blow hammer or non-metallic rod or hammer (such as nylon or wood).
- Qty. 2 #20 JIC steel caps.

If removed jaw set is to be stored, it is recommended to:

- Grease.
- Set on a wood pallet.
- Use a protective tarp for outside storage.

PROCEDURE FOR JAW SET INTERCHANGE

- A. Safe handling procedures must be followed to avoid personal injury.
- B. Lifting and securing mechanisms must be of adequate capacity to safely support the particular processor or jaw set.

UNIT POSITIONING

All processor positioning will be done with the excavator.

DETACHMENT OF THE EYE AND FORKED JAWS FROM THE CYLINDER SUB-ASSEMBLIES

DETACHMENT OF THE EYE AND FORKED JAWS FROM THE CYLINDER SUB-ASSEMBLIES

- 3. Manually remove the cylinder lock plates.
- 4. Remove the cylinder pins (c9).

WARNING

Once the cylinder jaw pins are removed, the jaws may rock forward.

REMOVAL OF THE JAW SET ASSEMBLY FROM THE MAIN FRAME

REMOVAL OF THE JAW SET ASSEMBLY FROM THE MAIN FRAME

7. Using a non-metallic (*e.g., nylon, wood*) rod (t3), drive the four jaw frame pins (c41) in until they hit the pin stop (131) or through the jaw frame (GB) and flush with the processor frame.

JAW SET STORAGE

If the removed jaw set is to be stored, pack the bushings with grease, lay the jaw set on a wood or metal pallet and cover with a waterproof tarp *(if storage is outside)*.

JAW SET INSTALLATION INTO THE MAIN FRAME

1. Using the excavator, hook the main frame assembly (DN1) at the hook pin (c46) to the jaw set assembly (DO1).

2. Using a 17 mm hex key socket or wrench, install the four retaining pin bolts (c42) to secure the four lock plates (c43) to the four jaw frame pins (c41). **NOTE:** *Keep threading the retaining pin bolts until the jaw frame pin stops against the pivot bushing* (c45) *located in the processor's main frame* (DN).

- 3. Line up the cylinder pin bores with the jaw pin bores and push the cylinder pins (c9) into place.
- Install the cylinder jaw pin lock plates (c30). Using a hex key socket, install the four 14 mm socket head cap screws. See the "FASTENER TORQUE CHART" section of this manual for the correct torque.

SLEWING RING INSPECTION AND MAINTENANCE

MEASURING MAXIMUM AXIAL MOVEMENT

- 1. While the unit is attached to the carrier, position the processor in a vertical position as shown.
- 2. Lock the base of a dial indicator (t40) onto the lower frame of the processor. Indicate the other end of the dial onto the top bracket face as shown. Using the excavator, slightly rock the processor back and forth using slight stick movement. Note the movement shown on the dial. Take this reading (d59) in four places. If your readings are greater than shown, please contact the NPK Service Department at 1-800-225-4379.

MODEL	NEW MAXIMUM		
	in <i>(mm)</i>		
M35	<.010	(<0.25)	

MODEL	MAXIMUM ALLOWABLE WEAR			
	in <i>(mm)</i>			
M35	0.138 (3.50)			

SWIVEL MANIFOLD ASSEMBLY

The swivel manifold assembly is located between the top bracket, which is pinned to the carrier, and the M35 processor frame that rotates. Hydraulic oil for both the open and close operations of the M35 processor pass through this manifold. The swivel manifold assembly consists of two main parts, the **"Spindle Case"** (BZ), which contains the oil seals, and the **"Spindle"** (CA), which rotates with the M35 processor frame (see **Fig. 1**).

Fig. 1

LEAKAGE OF THE SEALS

External leakage or internal bypassing of hydraulic fluid will require the replacement of the seals in the swivel assembly. For external leakage, please review the seal replacement procedure in the "**REPLACEMENT OF THE SEALS IN THE SWIVEL**" section of this manual. If internal leakage is suspected, please proceed to the "**TESTING THE SWIVEL SEALS FOR INTERNAL LEAKAGE**" in the next section.

TESTING THE SWIVEL SEALS FOR INTERNAL LEAKAGE

If internal leakage is suspected, before disassembling the swivel assembly, the relief valve (c17/c18) pressure settings should be checked. Internal leakage will most likely prevent the unit from reaching its relief settings in both the open and close functions. The relief valve cartridges are located in blocks (bs24) mounted to the swivel manifold assembly near the four hose connections (see Fig. 2). Access to these is through the upper side access plates of the M35 processor main frame (see Fig. 3). The relief valve setting adjustment screws (va1) are located beneath plastic caps. **NOTE:** Before attempting to adjust the relief setting, check that the relief valve cartridges have not loosened in their blocks.

Fig. 2

Fig. 3

TEST PROCEDURE

Install 0 to 5,000 psi (0 to 350 bar) gauges in the NPK stop valves (located on the stick of the carrier) or in gauge ports in the open and close circuits located near the end of the stick (for carriers without an NPK hydraulic kit). Close the jaw and keep the function activated, then read the pressure indicated on the gauge. Compare the pressure reached with the specifications for your M35 processor. Repeat the check while opening the jaws and read the pressure indicated. If the proper relief pressure cannot be reached and the booster slows or stops, disassemble the swivel to check for failed seals. **NOTE:** If the relief pressure cannot be reached with the jaw closed and the intensifier booster is clicking rapidly, the relief valves are not the problem and the intensifier booster should be checked.

REPLACEMENT OF THE SEALS IN THE SWIVEL

Tools needed:

19 and 22 mm open end wrenches

41 and 46 mm open end wrenches

External snap ring pliers

The jaws of the M35 material processor should be closed and the frame supported or the shipping pins (t80), as shown in **Fig. 4**, installed to prevent rotation during repair.

STEP 1 (Fig. 5)

Disconnect the rotation motor hoses (m39) at the hydraulic motor. It is not necessary to remove the hoses from the counterbalance valve. Remove the counterbalance valve and its mounting plate as a unit from the M35 processor frame. Remove the case drain (not shown) and port fittings (f1) from the hydraulic motor. Disconnect the cylinder hoses (AO) at the side plates of the top bracket. Do not remove the cylinder hoses and fittings from the "**Spindle Case**" (BZ); they will be used to help lift it off the "**Spindle**" (CA). Do not remove the stop plate (not shown) from the "Spindle Case"; it can be used for correct alignment during assembly.

Fig. 5

REPLACEMENT OF THE SEALS IN THE SWIVEL

STEP 2 (Fig. 6)

Remove the snap ring (AJ) and washer (U) from the top of the swivel assembly. Pull the **"Spindle Case"** off of the **"Spindle"** *(the cylinder hoses can be used for this).*

Fig. 6

STEP 3 (Fig. 7)

Inspection:

Visually inspect the sealing surfaces (120) of the "**Spindle**" (CA) for damage, which may hamper the ability of the o-rings to seal. Polishing the surface may clean up light scratching. Heavy scratching or galling may indicate rotator bearing play.

Fig. 7

REPLACEMENT OF THE SEALS IN THE SWIVEL

STEP 4 (Fig. 8)

Seal removal and replacement:

Sealing is accomplished with a combination of o-rings and back-up rings, which ride against the **"Spindle"**. Remove the o-rings and back-up rings with a seal pick (note the order of placement). Check the grooves (*118*) in the **"Spindle Case"** (BZ) for burrs or scoring damage. Light grinding or polishing may be required.

STEP 5 (Fig. 9)

Lubricate the o-rings (RR) and back-up rings (SS) with grease. Install the back-up rings first, taking care not to crimp or fold them. Install the o-rings. Refer to the illustration for o-ring and back-up ring placement.

Fig. 9

REPLACEMENT OF THE SEALS IN THE SWIVEL

Spray the **"Spindle"** (CA) with NPK assembly lube (P/N H010-5010). Install the hoses onto the **"Spindle Case"** (BZ). Slide the **"Spindle Case"** over the **"Spindle"**, which includes the relief valve cartridges (c17/c18). Install the washer (U) and snap ring (AJ). Reconnect the cylinder hoses to the top bracket, install the counterbalance valve, install the fittings into the hydraulic motor and install the hydraulic motor hoses.

FASTENER TORQUE SPECIFICATIONS

These torque charts are to be used with the specific "M35" Series processor parts manual for the unit being repaired.

All fasteners will be used with lube or medium strength adhesive. Bolts must have their threads wire brushed or cleaned with a thread die, then cleaned with solvent and finally cleaned with compressed air. Threaded holes must be cleaned with a thread tap, solvent and also with compressed air.

Use a common chassis or wheel bearing grease on fasteners listed as lubed. Grease the threads of the bolt and the contact surface under the bolt head. Grease the contact surface of nuts.

Use a few drops of medium strength thread adhesive on the threads of fasteners listed as torqued with adhesive.

Do not use anti-seize compound on any fasteners, unless otherwise noted.

BOLT LOCATION	BOLT SIZE	BOLT T	ORQUE	ADHESIVE
		ft. lb.	(Nm)	OR LUBED
CYLINDER ROD END PIVOT PIN KEEPER	M14	145	(200)	LUBED
CYL. BARREL END PIVOT PIN FLANGE	M12	65	(90)	LUBED
JAW PIVOT PIN NUT	M16	190	(255)	LUBED
CYLINDER PIN COVER PLATE	M22	550	(760)	LUBED
HOOK PIN	M12	65	(90)	LUBED
CUTTING BLADE, G & S JAWS	M16	225	(300)	ADHESIVE
CUTTING BLADE, K JAW	M20	360	(490)	ADHESIVE
TUNNEL FRONT BLADE, K JAW	M20	365	(495)	ADHESIVE
TOOTH PLATE, G JAW	M24	640	(870)	ADHESIVE
ACCESS PLATE	M12	90	(125)	LUBED
JOINT FITTING	M12	65	(90)	LUBED
WEDGE PLATE	M16	225	(300)	ADHESIVE

FASTENER TORQUE CHART - M35 MAIN FRAME ASSEMBLY

FASTENER TORQUE SPECIFICATIONS

FASTENER TORQUE CHART - M35 CYLINDER ASSEMBLY

BOLT LOCATION	BOLT SIZE	BOLT TORQUE		ADHESIVE
		ft. lb.	(Nm)	OR LUBED
CYLINDER END CAP	M20	365	(495)	LUBED
CYLINDER ROD NUT	M70	3200	(4300)	ADHESIVE
GUIDE PLATE	M16	225	(300)	ADHESIVE
BOOSTER ASSEMBLY	M16	220	(300)	ADHESIVE
MANIFOLD BLOCK	M14	145	(200)	ADHESIVE
CONNECTOR PIPE	M12	93	(125)	ADHESIVE

NOTE: For booster assembly bolt torques see **B000-9601** booster manual.

FASTENER TORQUE CHART - M35 ROTATION COMPONENTS

BOLT LOCATION	BOLT SIZE	BOLT T ft. lb.	ORQUE (Nm)	ADHESIVE OR LUBED
SLEWING RING	M24	700	(950)	LUBED
ASSEMBLY TO				
FRAME				
TOP PLATE TO	M16	260	(350)	ADHESIVE
SLEWING RING				
SLEWING RING	M12	93	(125)	ADHESIVE
COVER				
ROTATION MOTOR	M16	260	(350)	ADHESIVE
MOTOR PINION	M12	93	(125)	ADHESIVE
GEAR				
COUNTERBALANCE	M12	95	(130)	LUBED
VALVE				
COUNTERBALANCE	M12	95	(130)	LUBED
VALVE PLATE				
SWIVEL MANIFOLD	M20	430	(580)	ADHESIVE
ASSEMBLY				
SPINDLE BLOCK	M10	50	(68)	LUBED
SWIVEL MANIFOLD	M12	95	(130)	LUBED
FLANGE EXTENSION	M12	93	(125)	LUBED
STOP PLATE	M12	93	(125)	ADHESIVE

HOSE TORQUE SPECIFICATIONS

JIC ENDS

NOMINAL SIZE	FITTING DASH SIZE	THREAD SIZE	NUMBER OF FLATS FROM FINGER TIGHT	TORQUE	
				ft. lb.	(Nm)
1/2"	-8	3/4-16	1	36 - 39	(49 - 53)
3/4"	-12	1-1/16-12	1	79 - 88	(107 - 119)
1"	-16	1-5/16-12	1	108 - 113	(146 - 153)
1-1/4"	-20	1-5/8-12	1	127 - 133	(172 - 180)

ORFS ENDS

NOMINAL SIZE	FITTING DASH SIZE	THREAD SIZE	NUMBER OF FLATS FROM FINGER TIGHT	TORQUE	
				ft. lb.	(Nm)
1/2"	-8	13/16-16	1.25 - 1.75	32 - 35	(43 - 48)
3/4"	-12	1-3/16-12	1.25 - 1.75	65 - 70	(88 - 95)
1"	-16	1-7/16-12	1.25 - 1.75	92 - 100	(125 - 136)
1-1/4"	-20	1-11/16-12	1.25 - 1.75	125 - 140	(170 - 190)

DETERMINE THE TYPE OF PROBLEM

Performance problems are classified as "LOSS OF POWER" or "LOSS OF CYCLE SPEED" (assuming the problem is not due to misapplication).

1. LOSS OF POWER

NPK M35 Material Processor jaw crushing/cutting forces are determined by the operating pressure setting and NPK pressure intensifier performance.

2. LOSS OF CYCLE SPEED

NPK M35 Material Processor cycle speed is determined by oil flow to the unit. The hydraulic installation circuit for the M35 Material Processor must be set to provide the correct flow.

DETERMINE THE CAUSE OF THE PROBLEM

Technical problems are caused by either the NPK M35 Material Processor or the carrier's hydraulic system *(hydraulic installation kit for the M35 Material Processor)*. Checking the hydraulic pressure and flow will determine if the problem is in the M35 Material Processor or the carrier. If the pressure and flow to the Processor are correct, the problem is in the M35 Material Processor.

LOSS OF POWER

Loss of power can be caused by a low carrier relief valve setting or by a low M35 Material Processor relief valve setting. Verify the correct relief valve settings of the carrier and the M35 Material Processor. (See "M35 PROCESSOR RELIEF VALVE AND CARRIER RELIEF VALVE SETTINGS" on page 99.)

If the relief valve pressures are to specification, proceed to the "INTENSIFIER CHECKS" troubleshooting chart on page 100 and the "PRESSURE INTENSIFIER OPERATION" section on page 102.

TROUBLESHOOTING GUIDE FOR LOW POWER RELIEF VALVE CHECKS

LOW POWER CHECKS

PROBLEM	CAUSE	CHECK	REMEDY
Operating Pressure is less than 3,700 psi (<i>255 bar</i>).	Carrier hydraulic circuit relief valve.	Measure the carrier circuit relief valve with the pressure to close shut-off valve in the "OFF" position	Adjust or replace the carrier circuit relief valve. The setting for the relief valve must be 200 psi (<i>14 bar</i>), minimum, above the M35 Processor operating pressure.
	M35 Processor relief valves	Measure the relief valves with the shut- off valves on the carrier in the "ON" position. Check pressure with the jaws fully open and fully closed.	Setting should be 3,700 psi (<i>255 bar</i>)
		Check relief cartridges for tightness.	Tighten the relief valve cartridges.
		Check relief cartridges for mis- adjustment.	Reset to 3,700 psi (<i>255 bar</i>). If unable to adjust, replace the cartridge.
		Check the o-rings and backup rings of the relief valve cartridges.	Replace the o-rings and backup rings of both relief valve cartridges.
	Pilot check valve assemblies.	Inspect the booster inlet pilot check valves for damage.	Replace the inlet pilot check valve assemblies if necessary.
	Swivel manifold assembly	Check the seals between the open and close passages in the swivel manifold assembly.	Replace the seals in the swivel manifold assembly.
		Check the land areas for the seals in the swivel manifold assembly.	Repair the land area or replace the spindle.

TROUBLESHOOTING GUIDE FOR LOW POWER RELIEF VALVE CHECKS

LOW POWER CHECKS

PROBLEM	CAUSE	CHECK	REMEDY
Operating pressure is at 3,700 psi (255 bar), but the intensifier does not click.	Booster control valve assembly.	Dis-assemble the main valve and inspect the spring, plungers and for free movement of the spool.	Polish or replace as necessary.
	Booster assembly	Dis-assemble the main valve and inspect the piston assembly, seals, poppets and seats.	Polish or replace as necessary.

MEASURING OPERATING PRESSURES

Tools and equipment required:

(For carriers with an NPK hydraulic installation kit installed).

Pressure gauge (g8f): 5000 psi (350 bar).

Test port adapter (g20): to fit #4 SAE female port in NPK shut-off valve (k4).

Test hose (t81): 5000 psi (350 bar) rated

RELIEF VALVE CHECKING AND SETTING PROCEDURE

NPK Hydraulic Installation Kits provide shut-off valves (k4) with test ports (k8) in both the jaw open (m4) and close lines (m3). Install pressure test hoses in both test ports.

1. CARRIER CIRCUIT RELIEF VALVE CHECK

Verify that the hydraulic system of the carrier meets the requirements of the M35 Material Processor.

- A. Install a 0 5000 psi (*350 bar*) pressure gauge (g8f) in the #4 SAE test ports in each of the shut-off valves at the end of the stick.
- B. Turn the shut-off valve (k4) in the close circuit to the "OFF" position (k6).

C. Start the carrier. Set the throttle to the "FULL" position. Actuate the hydraulic circuit to close the jaws.

D. The pressure reading should be at least 200 psi *(14 bar)* above the M35 Material Processor operating pressure.

Note: If the excavator relief setting is less than 200 psi *(14 bar)* above the M35 Material Processor operating pressure, reset the excavator accordingly. (See specifications).

2. M35 MATERIAL PROCESSOR RELIEF VALVE

After the M35 Material Processor hydraulic circuit has been verified, check the M35 Material Processor relief valve settings for both open and close.

- A. With a 0 5000 psi (350 bar) gauge installed in both the open and close side of the stick, open the shut-off valves.
- B. Start the carrier. Set the throttle at full RPM and close the jaws completely and hold for 10 seconds. Check the psi *(bar)* reading on the gauge and compare to the specified M35 Material Processor relief valve setting. If it is not the same, reset the M35 Material Processor relief valve accordingly.
- C. The booster will start to click. Depending on oil temperature, the booster will continue to click slowly compensating internal leaking in the main cylinder. This is normal.
- D. If the intensifier is clicking rapidly, pressure may not reach the relief valve setting due to severe intensifier or cylinder leakage.
- E. Open the M35 Material Processor jaws to the fully open position and hold for 10 seconds. Check the pressure reading on the gauge and compare to the specified M35 Material Processor relief valve setting. If it is not the same, reset the M35 Material Processor relief valve accordingly.

PRESSURE INTENSIFIER SEQUENCE VALVE AND RELIEF VALVE ACTUATION

Close the jaws without material in them. When the M35 Material Processor's cylinders are fully stroked, the load pressure rises until it reaches the M35 Material Processor's (GX) relief valve setting (P2). The excavator relief valve acts only as a safety relief and must be set a minimum of 200 psi *(14 bar)* above the M35 Material Processor relief valve setting shown below.

k4	MODEL	SERIAL NO.	M PROCE REL VAI SET	ESSOR LIEF LVE TING	P MINI CAR REL VAI SET	MUM RIER JEF JVE TING
			psi	(bar)	psi	(bar)
GX PROC 10086	M35	ALL	3,700	(255)	3,900	(270)

M35 MATERIAL PROCESSOR RELIEF VALVE AND CARRIER RELIEF VALVE SETTINGS

MODEL	SERIAL NO.	P2 M35 PROCESSOR RELIEF VALVE SETTING		P3 MINIMUM CARRIER RELIEF VALVE SETTING	
		psi	(bar)	psi	(bar)
M35	ALL	3,700	(255)	3,900	(270)

RELIEF VALVE LOCATION

The M35 Material Processor relief valve cartridges, close (c17) and open (c18) are located in the relief blocks (bs24) that are bolted to the rotary joint assembly (BN).

INTENSIFIER CHECKS (unit does not click)

PROBLEM	CAUSE	CHECK	REMEDY
Intensifier does not click	M35 Processor relief valves	Check relief cartridges for tightness.	Tighten the relief valve cartridges.
		Check relief cartridges for mis- adjustment.	Reset to 3,700 psi (<i>255 bar</i>). If unable to adjust, replace the cartridge.
		Check the o-rings and backup rings of the relief valve cartridges.	Replace the o-rings and backup rings of both relief valve cartridges.
	Booster control valve assembly.	Dis-assemble the main valve and inspect the spring, plungers and for free movement of the spool.	Polish or replace as necessary.
	Booster assembly	Check poppets and seats.	Replace poppets and seats as necessary.
		Check all o-rings and backup rings.	Replace all o-rings and backup rings.

INTENSIFIER CHECKS

INTENSIFIER CHECKS (unit clicks – does not slow down)

PROBLEM	CAUSE	CHECK	REMEDY
Intensifier clicks but does not slow down	M35 Processor relief valves	Check relief cartridges for tightness.	Tighten the relief valve cartridges.
	Pilot check valve assemblies.	Inspect the booster inlet pilot check valve assemblies for damaged seats.	Replace the inlet pilot check valve assemblies.
	Booster assembly	Check poppets and seats.	Replace poppets and seats as necessary.
		Check all o-rings and backup rings.	Replace all o-rings and backup rings.
	Main cylinder assemblies	Check main cylinder piston rings for by- passing oil.	Replace piston rings.
		Check for damaged seals.	Reseal cylinders

INTENSIFIER CHECKS

PRESSURE INTENSIFIER OPERATION

NPK's exclusive pressure intensifier system is used in NPK M35 Material Processors to boost cylinder pressure to increase the jaw closing forces. When the intensifier is working properly, a rapid clicking sound will be heard, indicating that the pressure intensifier is being actuated as the jaws begin to close against resistance. As the jaws grasp tighter onto the material, the clicking will begin to slow down. This slowing will continue until the material is either cut/crushed or the M35 Material Processor meets full resistance. At full resistance, the clicking will slow dramatically or sometimes stop completely.

PRESSURE INTENSIFIER (BOOSTER)

The control valve (bs10) and booster assembly (bs27) make up the pressure intensifier assembly.

RAPID CONTINUOUS CLICKING IS HEARD AND THE MATERIAL IS NOT BEING CRUSHED/SHEARED AS EXPECTED

This indicates that the problem is not a relief setting, but it is in the intensifier or the cylinder of the M35 Material Processor. This requires further investigation by a mechanic/technician, see "INTENSIFIER CHECKS" (clicks – does not slow down) section on page 101.

CHECKING BOOSTED PRESSURE

WARNING EXTREMELY HIGH PRESSURE OIL!

NPK gauge assembly, **P/N L017-8000** is available to directly check the boosted pressure on all M35 Material Processors. The pressure intensifier's have three test ports as shown.

L017-8000 GAUGE ASSEMBLY			
g23	L017-4020	gauge: 0 - 15,000 psi (<i>0 - 1000 bar</i>)	
f1	L007-6630	female swivel adapter	
f2	K023-6690	male adapter	

PROCEDURE:

- 1. Remove a plug from one of the test ports and install the male adapter (f2). Choose the port that will give you the best gauge clearance and viewing.
- 2. Install the gauge (g23) into the swivel adapter (f1). (Use thread sealant).
- 3. Install the gauge and swivel adapter onto the male adapter. (No thread sealant required.)
- 4. Close the jaws all the way. Pressure will rise to the the full boosted pressure of approximately 10,870 psi (750 bar) which is a ratio of 2.938:1. When the clicking of the booster slows, it is at full intensification, click...click...etc., is normal. If the clicking continues rapidly and will not slow down, there may be a problem with the intensifier or the M35 Material Processor cylinder assemblies.
- 5. Open the jaws all the way. You will now read the relief setting of the jaw open circuit. Note that the intensifier only works on jaw close. Jaw open sees the M35 Material Processor's or the carrier's relief valve pressure setting, whichever is lower.

NOTE: IF ADDITIONAL ASSISTANCE IS REQUIRED, CALL THE NPK SERVICE DEPARTMENT AT 1-800-225-4379.

SLOW CYCLE SPEED

The specified cycle times of the M35 Material Processor are controlled by the flow provided by the hydraulic circuit of the carrier. The published cycle times of the M35 Material Processor are a direct result of the maximum published oil flow; see the **"MODEL SPECIFICATIONS"** section of this instruction manual.

NOTE: If the jaws will not open or close, be sure the open and close shut-off valves are in the "**ON**" position.

Tools and equipment required:

(For carriers with an NPK hydraulic installation kit installed.)

Pressure gauge (g8f): 5000 psi (350 bar).

Test port adapter (g20): to fit #4 SAE female port in NPK shut-off valve (k4).

Test hose (t81): 5000 psi (350 bar) rated.

Loading type hydraulic flow meter (t36): 100 gpm (380 l/m) hydraulic flow capacity.

TEST PROCEDURE

Install a pressure gauge in the test port of the jaw close circuit *(left shut-off valve as seen from the operator's position)*. Fully stroke the M35 Material Processor cylinders. Measure the attachment operating pressure.

PROBLEM	CAUSE	CHECK	REMEDY
Slow cylinder speed. Operating pressure is at 3,700 psi (<i>255 bar</i>), but the intensifier does not click.	Carrier flow setting is set too low.	Check flow output of M35 Material Processor hydraulic circuit at 1000 psi (69 <i>bar</i>).	Adjust carrier flow output to meet NPK specifications. Repair or replace the carrier's pump.
	M35 Material Processor cylinders.	Check piston rings in M35 Material Processor cylinders.	Replace if damaged or worn.

SLOW CYLINDER SPEED

TEST PROCEDURE

PROBLEM	CAUSE	CHECK	REMEDY
Operating Pressure is less than 3,700 psi (<i>255 bar</i>).)	Carrier hydraulic circuit relief valve.	Measure the carrier circuit relief valve with the pressure to close shut-off valve in the "OFF" position	Adjust or replace the carrier circuit relief valve. The setting for the relief valve must be 200 psi (<i>14 bar</i>), minimum, above the M35 Processor operating pressure.
	M35 Processor relief valves	Measure the relief valves with the shut- off valves on the carrier in the "ON" position. Check pressure with the jaws fully open and fully closed.	Setting should be 3,700 psi (<i>255 bar</i>).
		Check relief cartridges for tightness.	Tighten the relief valve cartridges.
		Check relief cartridges for mis- adjustment.	Reset to 3,700 psi (255 bar). If unable to adjust, replace the cartridge.
		Check the o-rings and backup rings of the relief valve cartridges.	Replace the o-rings and backup rings of both relief valve cartridges.

SLOW CYLINDER SPEED

CHECKING THE HYDRAULIC FLOW AT RATED PRESSURE

5	out port	
6	in port	
fm1	load valve	
fm2	flow/temperature display	
fm3	flow/temperature switch	
fm4	pressure gauge	

(Typical loading type flow meter)

1. Installation of the loading type flow meter.

Install the flow meter (t36) between the M35 Material Processor close (m3) and open lines (m4) as shown. Typically, the jaw close line is on the left and the jaw open is on the right of the M35 Material Processor *(looking from the operator's seat)*.

2. Determine the return line pressure (pressure drop).

Open both shut-off valves (k4) and energize the M35 Material Processor close switch. Measure the pressure on the flow meter gauge (fm2) with the load valve (fm1) in the full open position.

CHECKING THE HYDRAULIC FLOW AT RATED PRESSURE

3. Determine the circuit relief valve pressure and oil flow.

NOTE: *First, warm the carrier's hydraulic system to operating temperature.* Measure the flow and pressure with the loading flow meter (t36). Adjust the load valve (f1) to zero restriction *(fully open)*. Set the engine throttle to the maximum *(full)* position. Energize the M35 Material Processor to close switch.

Slowly turn the loading valve knob (fm1) clockwise and record the pressure and flow at regular pressure intervals (pr) on graph paper. Record pressure on one axis of the graph and flow (fl) on the other. This is the circuit flow chart. Refer to the **"MODEL SPECIFICATIONS"** section of this manual for the correct flow at 1000 psi (70 bar).

JAW DRIFT

- Some jaw drift may be experienced depending on the Material Processor's position.
- Acceptable drift may occur over a number of minutes.
- Rapid drift may indicate a problem with the Material Processor's cylinder, booster, or swivel manifold. The problem could also be in the carrier's hydraulic circuit.

TO DETERMINE IF THE JAW DRIFT IS WITH THE M35 MATERIAL PROCESSOR OR THE CARRIER

- 1. Remove the hoses (m3 and m4) from the joint fittings on the outside of the Material Processor's frame and close the shut-off valves on the carrier.
- 2. Cap (AR) the joint fittings and plug (AS) the hoses. Fitting size is 20 JIC.

- **IF THE JAW DRIFTS:** The problem is in the cylinder, intensifier pilot checks or internal leakage in the swivel manifold of the M35 Material Processor (GX).
- IF NO DRIFT OCCURS: The problem is in the carrier's main control valve. Contact your carrier dealer. NOTE: Drift due to the main control valve internal leakage may be inherent to the carrier and not repairable.

ROTATION

The rotation speed is a direct result of the amount of flow (gpm – lpm) supplied by the rotation hydraulic circuit of the carrier. The chart below lists the recommended rotation speed and approximate flow required for your M35 Material Processor.

MODEL	ROTATION SPEED	APPROXIMATE FLOW		CARRIER VALVE S	
	rpm	gpm	(Ipm)	psi	(bar)
M35	6.5 - 10	2.5 - 4	(10 - 15)	3,000	(205)

Adjust the rotation flow so that the rpm is within the guidelines shown for the M35 Material Processor.

Flows are checked at a normal operating pressure of 1000 psi *(70 bar)*. The relief listed in the above chart is only necessary to protect the rotation supply componentry.

NOTE: The rotation motor drain line is to be routed straight to tank. Maximum back pressure should not exceed 150 psi (10 bar).

ROTATION

Excessive rotation speed will result in damage to the hydraulic motor, pinion gear, and slewing ring.

PROBLEM	CAUSE	CHECK	REMEDY
Unit will not rotate.	Low or no flow	Check hydraulic flow. (See M35 Processor rotation flow specifications.)	Adjust rotation hydraulic circuit flow setting.
	Pressure setting of M35 Processor rotation counterbalance valves.	Check counterbalance valve pressure settings for both directions.	adjust counterbalance valve pressure settings.
			Replace counterbalance valve.
	Broken pinion gear or hydraulic motor shaft.	Check pinion gear and hydraulic motor shaft.	Replace pinion gear or hydraulic motor.
Unit will not hold position.	Pressure setting of M35 Processor rotation counterbalance valves.	Check counterbalance valve pressure settings for both directions.	adjust counterbalance valve pressure settings.
			Replace counterbalance valve.
	Broken pinion gear or hydraulic motor shaft.	Check pinion gear and hydraulic motor shaft.	Replace pinion gear or hydraulic motor.

ROTATION

ROTATION

IF THE UNIT WILL NOT ROTATE

- 1. Check the rotation circuit hydraulic flow per the chart above.
 - a. If the flow is within specification, install gauges into the rotation hydraulic circuit hose lines.
 - b. Position the attachment so it will not rotate.
 - c. Attempt to rotate the unit in both directions. Each gauge should read 2000 psi *(138 bar)*.
 - d. If 2000 psi *(138 bar)* is not achieved, adjust the cross port relief valve cartridges (ma4) on the counterbalance valve (BO).

- e. If adjustment is not possible, call the NPK Service Department at 1-800-225-4379.
- 2. Check motor shaft and pinion gear.

UNIT WILL NOT HOLD POSITION

Follow steps 1a through 1e above.

KEYWORDS FOR COMMON M35 PROCESSOR COMPONENTS

BJ	PIN
BN	ROTARY JOINT ASSEMBLY
BO	ROTATION VALVE
BQ2	HYDRAULIC MOTOR
BR	PINION GEAR
bs35	BOOSTER ASSEMBLY
BT	SLEWING RING
BT1	SLEWING RING COVER
c11	CYLINDER ASSEMBLY
c13	CYLINDER PIN LOCKING PLATE
c29	CYLINDER ASSEMBLY COVER
c32	PIVOT PIN NUT
c36	CYLINDER PIN COVER PLATE
СН	TOP PLATE
DN	MAIN FRAME
DP	LOCK PIN
GD	HOOK PIN
GE	JAW FRAME PIN
GF	WEDGE PLATE
GH	STOP PLATE
m 7	TOP BRACKET
m14	BUSHING
m18	JOINT FITTING
m28	CYLINDER ROD PIN
s 9	COVER PLATE

KEYWORDS FOR COMMON M35 PROCESSOR "K" JAW COMPONENTS

BD	MALE JAW
BG	PRIMARY BLADE
BG1	SECONDARY BLADE
BI	FEMALE JAW
BJ	PIN
c32	PIVOT PIN NUT
DB	TUNNEL BLADE
DF	GUIDE BLADE
DG1	PIERCING TIP (bolt on)
DG2	PIERCING TIP (bolt on)
GB	JAW FRAME
m14	BUSHING

KEYWORDS FOR COMMON M35 PROCESSOR CYLINDER COMPONENTS

WARRANTY STATEMENTS

WARRANTY STATEMENTS

NOTES

NPK MATERIAL PROCESSOR MODEL NUMBER

SERIAL NUMBER

NPK INSTALLATION KIT NUMBER

EXCAVATOR MANUFACTURER	
MODEL NUMBER	
SERIES	
SERIAL NUMBER	

DATE OF INSTALLATION

DATE OF 20 HOUR INSPECTION WARRANTY REGISTRATION SENT

SERVICE RECORD

DATE

© Copyright 2020 NPK Construction Equipment, Inc. www.npkce.com M000-9601C M35 Material Processor Instruction Manual 3-20